Exponential lower bounds on spectrahedral representations of hyperbolicity cones
نویسندگان
چکیده
The Generalized Lax Conjecture asks whether every hyperbolicity cone is a section of a semidefinite cone of sufficiently high dimension. We prove that the space of hyperbolicity cones of hyperbolic polynomials of degree d in n variables contains (n/d) pairwise distant cones in the Hausdorff metric, and therefore that any semidefinite representation of such polynomials must have dimension at least (n/d) (even allowing a small approximation error). The cones are perturbations of the hyperbolicity cones of elementary symmetric polynomials. Our proof contains several ingredients of independent interest, including the identification of a large subspace in which the elementary symmetric polynomials lie in the relative interior of the set of hyperbolic polynomials, and a quantitative generalization of the fact that a real-rooted polynomial with two consecutive zero coefficients must have a high multiplicity root at zero.
منابع مشابه
Smooth hyperbolicity cones are spectrahedral shadows
Hyperbolicity cones are convex algebraic cones arising from hyperbolic polynomials. A well-understood subclass of hyperbolicity cones is that of spectrahedral cones and it is conjectured that every hyperbolicity cone is spectrahedral. In this paper we prove a weaker version of this conjecture by showing that every smooth hyperbolicity cone is the linear projection of a spectrahedral cone, that ...
متن کاملPolynomial-sized semidefinite representations of derivative relaxations of spectrahedral cones
We give explicit polynomial-sized (in n and k) semidefinite representations of the hyperbolicity cones associated with the elementary symmetric polynomials of degree k in n variables. These convex cones form a family of non-polyhedral outer approximations of the non-negative orthant that preserve low-dimensional faces while successively discarding high-dimensional faces. More generally we const...
متن کاملHyperbolic Polynomials and Generalized Clifford Algebras
We consider the problem of realizing hyperbolicity cones as spectrahedra, i.e. as linear slices of cones of positive semidefinite matrices. The generalized Lax conjecture states that this is always possible. We use generalized Clifford algebras for a new approach to the problem. Our main result is that if −1 is not a sum of hermitian squares in the Clifford algebra of a hyperbolic polynomial, t...
متن کاملCapacity Bounds and High-SNR Capacity of the Additive Exponential Noise Channel With Additive Exponential Interference
Communication in the presence of a priori known interference at the encoder has gained great interest because of its many practical applications. In this paper, additive exponential noise channel with additive exponential interference (AENC-AEI) known non-causally at the transmitter is introduced as a new variant of such communication scenarios. First, it is shown that the additive Gaussian ch...
متن کاملA full NT-step O(n) infeasible interior-point method for Cartesian P_*(k) –HLCP over symmetric cones using exponential convexity
In this paper, by using the exponential convexity property of a barrier function, we propose an infeasible interior-point method for Cartesian P_*(k) horizontal linear complementarity problem over symmetric cones. The method uses Nesterov and Todd full steps, and we prove that the proposed algorithm is well define. The iteration bound coincides with the currently best iteration bound for the Ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.11497 شماره
صفحات -
تاریخ انتشار 2017